Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 9: 885610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937617

RESUMO

Throughout the last decade, many assistive robots for people with disabilities have been developed; however, researchers have not fully utilized these robotic technologies to entirely create independent living conditions for people with disabilities, particularly in relation to activities of daily living (ADLs). An assistive system can help satisfy the demands of regular ADLs for people with disabilities. With an increasing shortage of caregivers and a growing number of individuals with impairments and the elderly, assistive robots can help meet future healthcare demands. One of the critical aspects of designing these assistive devices is to improve functional independence while providing an excellent human-machine interface. People with limited upper limb function due to stroke, spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis, and other conditions find the controls of assistive devices such as power wheelchairs difficult to use. Thus, the objective of this research was to design a multimodal control method for robotic self-assistance that could assist individuals with disabilities in performing self-care tasks on a daily basis. In this research, a control framework for two interchangeable operating modes with a finger joystick and a chin joystick is developed where joysticks seamlessly control a wheelchair and a wheelchair-mounted robotic arm. Custom circuitry was developed to complete the control architecture. A user study was conducted to test the robotic system. Ten healthy individuals agreed to perform three tasks using both (chin and finger) joysticks for a total of six tasks with 10 repetitions each. The control method has been tested rigorously, maneuvering the robot at different velocities and under varying payload (1-3.5 lb) conditions. The absolute position accuracy was experimentally found to be approximately 5 mm. The round-trip delay we observed between the commands while controlling the xArm was 4 ms. Tests performed showed that the proposed control system allowed individuals to perform some ADLs such as picking up and placing items with a completion time of less than 1 min for each task and 100% success.

2.
J Neuroeng Rehabil ; 18(1): 173, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922590

RESUMO

BACKGROUND: Building control architecture that balances the assistive manipulation systems with the benefits of direct human control is a crucial challenge of human-robot collaboration. It promises to help people with disabilities more efficiently control wheelchair and wheelchair-mounted robot arms to accomplish activities of daily living. METHODS: In this study, our research objective is to design an eye-tracking assistive robot control system capable of providing targeted engagement and motivating individuals with a disability to use the developed method for self-assistance activities of daily living. The graphical user interface is designed and integrated with the developed control architecture to achieve the goal. RESULTS: We evaluated the system by conducting a user study. Ten healthy participants performed five trials of three manipulation tasks using the graphical user interface and the developed control framework. The 100% success rate on task performance demonstrates the effectiveness of our system for individuals with motor impairments to control wheelchair and wheelchair-mounted assistive robotic manipulators. CONCLUSIONS: We demonstrated the usability of using this eye-gaze system to control a robotic arm mounted on a wheelchair in activities of daily living for people with disabilities. We found high levels of acceptance with higher ratings in the evaluation of the system with healthy participants.


Assuntos
Pessoas com Deficiência , Robótica , Tecnologia Assistiva , Cadeiras de Rodas , Atividades Cotidianas , Humanos , Interface Usuário-Computador
3.
Artigo em Inglês | MEDLINE | ID: mdl-35719427

RESUMO

Recent statistics reveal that the number of individuals with upper or lower extremity dysfunctions has increased alarmingly. It is estimated that approximately 3.3 million Americans use a wheelchair, with an expected 2 million new wheelchair users every year. To assist powered wheelchair users with limited upper limb function, we have been exploring assistive robots that can be mounted on a wheelchair to perform essential activities of daily living (ADL), such as picking/placing an object from out of reach, feeding, etc. In this research, a 6DoF robot, xArm-6 was used as an assistive robot to provide ADL assistance. Experiments were conducted with xArm6 Robot to investigate the motion trajectories and workspace covering essential ADLs. In kinematic analysis, modified Denavit-Hartenberg parameters are used to identify the Robot's motion path and workspace. On the other hand, the iterative Newton-Euler method was used for dynamic analysis to estimate the joint torques corresponding to each ADL. Experimental results show that xArm-6 can be used for some selected ADLs tasks but not for all essential ADLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...